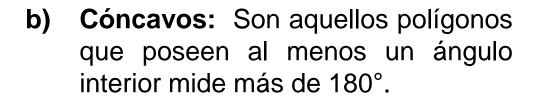
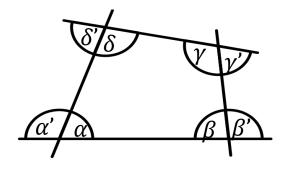


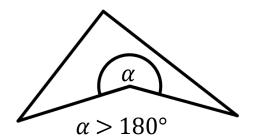
Matemática B Cuadriláteros

Departamento de Matemática Preuniversitario Futuro

Aprendizaje Esperado

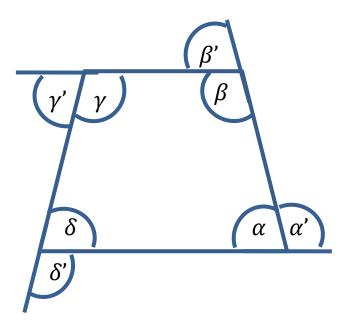

Conocer e identificar los cuadriláteros, reconocer sus propiedades




Definición:

Son polígonos de cuatro lados que se dividen en convexas y cóncavas.

a) Convexos: Son aquellos polígonos que poseen todos sus ángulos interiores menores a 180°.

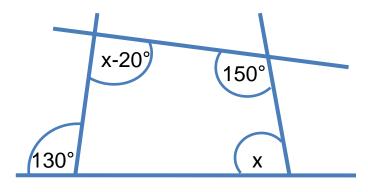

Teoremas

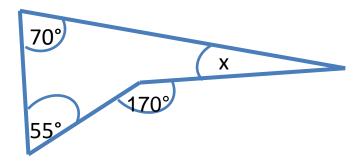
1) En todo cuadrilátero la suma de los ángulos interiores es 360°.

$$\alpha + \beta + \gamma + \delta = 360^{\circ}$$

2) En todo cuadrilátero la suma de los ángulos exteriores es 360°.

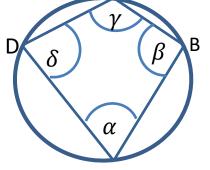
$$\alpha' + \beta' + \gamma' + \delta' = 360^{\circ}$$

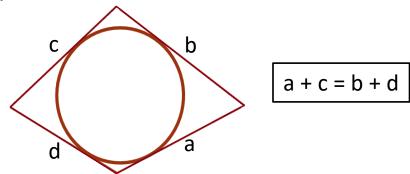



Ejemplos:

Cada figura representa a un cuadrilátero, encontrar en cada caso el

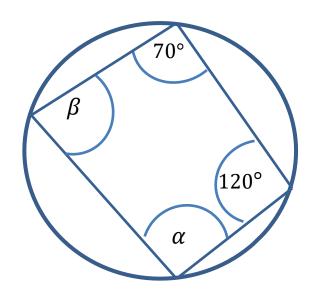
valor de x.

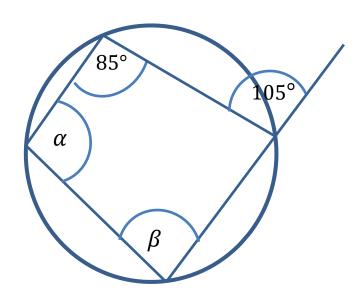



3) En todo cuadrilátero inscrito en una circunferencia, los ángulos opuestos

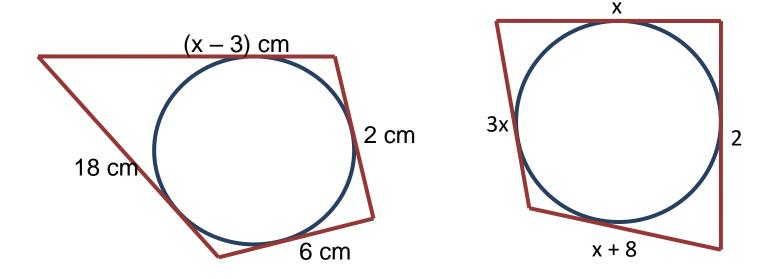
son suplementarios.

$$\alpha + \gamma = 180^{\circ}$$
$$\beta + \delta = 180^{\circ}$$


4) En todo cuadrilátero circunscrito en una circunferencia, la suma de las medidas de los lados opuestos es la misma.



EJEMPLOS


1) Los cuadriláteros están inscritos en la circunferencia. ¿Cuánto mide α y β ?

2) Los cuadriláteros están circunscritos a las circunferencias. ¿Cuántos miden x e y?

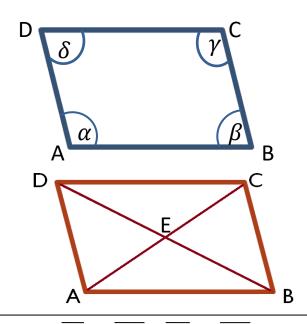
Clasificación de los cuadriláteros

Los cuadriláteros se clasifican en:

Paralelogramos: Cuadriláteros que tienen dos pares de lados opuestos paralelos.

Cuadriláteros

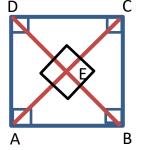
Trapecios: Cuadriláteros que tienen sólo un par de lados opuestos paralelos.


Trapezoides: Cuadriláteros cuyos lados no son paralelos.

Paralelogramos:

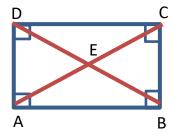
Sus características muestran que tienen:

- i. Lados opuestos paralelos
- ii. Lados opuestos congruentes
- iii. Ángulos opuestos congruentes
- iv. Ángulos consecutivos suplementarios
- v. Las diagonales se dimidian
- vi. Las diagonales de un paralelogramo dividen a éste en dos triángulos congruentes


$$\overline{AB}$$
 // \overline{CD} y \overline{AD} // \overline{BC}
 $\overline{AB} \cong \overline{CD}$ y $\overline{AD} \cong \overline{BC}$
 $\alpha \cong \gamma$; $\beta \cong \delta$
 $\alpha + \beta = 180^{\circ}$; $\beta + \gamma = 180^{\circ}$
 $\gamma + \delta = 180^{\circ}$; $\delta + \alpha = 180^{\circ}$
 $\overline{AE} \cong \overline{EC}$; $\overline{BE} \cong \overline{DE}$

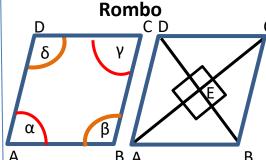
PARALELOGRAMOS

Dos pares de lados paralelos.



 \overline{AB} // \overline{CD} ; \overline{BC} // \overline{DA} $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DA}$ Ángulos interiores 90°

Diagonales $\overline{AC} = \overline{BD}$ AC I BD E punto medio


Polígono Regular

Rectángulo

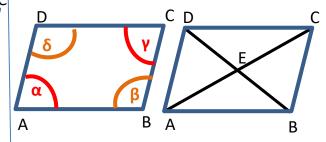
 \overline{AB} // \overline{CD} ; \overline{BC} // \overline{DA} $\overline{AB} = \overline{CD}; \overline{BC} = \overline{DA}$ Ángulos interiores 90°

Diagonales $\overline{AC} = \overline{BD}$ E punto medio

 \overline{AB} // \overline{CD} ; \overline{BC} // \overline{DA} $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DA}$ $\alpha = \gamma$; $\beta = \delta$

 $\alpha + \beta = 180^{\circ}; \beta + \gamma = 180^{\circ}$

 $v + \delta = 180^{\circ}; \delta + \alpha = 180^{\circ}$


Diagonales: AC ≠ BD

AC I BD

E punto medio

 $AE = \overline{EC}$; $\overline{ED} = \overline{EB}$

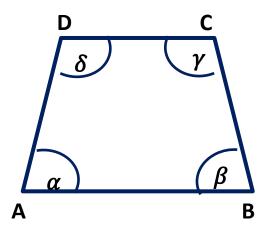
Romboide

 \overline{AB} // \overline{CD} ; \overline{BC} // \overline{DA} $\overline{AB} = \overline{CD}; \overline{BC} = \overline{DA}$ $\alpha = \gamma$; $\beta = \delta$ $\alpha + \beta = 180^{\circ}; \beta + \gamma = 180^{\circ}$ $v + \delta = 180^{\circ}; \delta + \alpha = 180^{\circ}$ Diagonales AC ≠ BD E punto medio $AE = \overline{EC}; \overline{ED} = \overline{EB}$

PARALELOGRAMOS

Paralelogramos Equiláteros: Son los paralelogramos Cuadrado y Rombo:

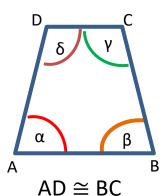
- Las diagonales son bisectrices de los ángulos interiores.
- 2) Las diagonales son perpendiculares.
- Se les puede inscribir una circunferencia.



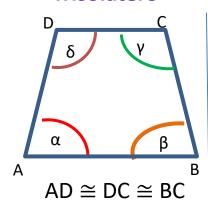
2) Se les puede circunscribir una circunferencia.

TRAPECIOS

Definición: Son cuadriláteros que tienen un par de lados opuestos paralelos y que tienen propiedades como:

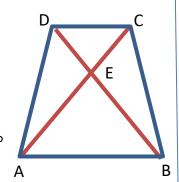

- a) Un par de lados paralelos AB // CD
- b) Dos pares de ángulos suplementarios

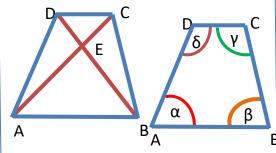
$$\alpha + \delta = 180^{\circ}; \ \beta + \gamma = 180^{\circ}$$



Tipos de Trapecios

Isósceles


Trisolátero


Características comunes entre Trapecio isósceles y Trisolátero:

$$lpha\cong eta$$
 ; $\gamma\cong \delta$ $lpha\neq \delta$; $eta\neq \gamma$ AB // DC AC \cong DB $lpha+\delta=180^\circ$; $eta+\gamma=180^\circ$

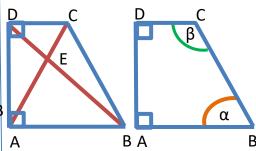
DE = EC ; AE = BE E no es punto medio

Escaleno

$$AB \neq DC \neq AD \neq BC$$

$$\alpha \neq \beta \neq \gamma \neq \delta$$

AB // DC


AC ≠ DB

$$\alpha$$
 + δ = 180°;

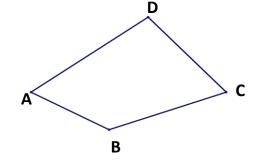
$$\beta + \gamma = 180^{\circ}$$

E no es punto medio

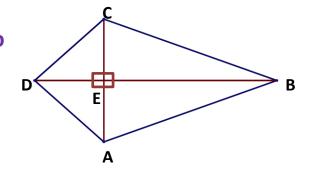
Rectángulo

$$\alpha \neq \beta$$

$$AC \neq DB$$


$$\alpha + \beta = 180^{\circ}$$

TRAPEZOIDES


Cuadriláteros cuyos lados no son paralelos.

Asimétrico

Simétrico

Deltoide

 $DC \cong AD$

 $CB \cong AB$

 $\mathsf{DB} \perp \mathsf{AC}$

 $\angle ADE \cong \angle EDC$; DB bisectriz

∡EBA ≅ ∡CBE

∡BAD ≅ ∡DCB

∡DCE ≅ ∡EAD

∡ECB ≅ ∡BAE

E punto medio de CA: $AE \cong EC$