

El carbono tienen la capacidad de formar enlaces carbono-carbono sencillos, dobles y triples. Además puede formar cadenas extendidas o estructuras cíclicas.

REGLA DEL OCTETO
REGLA DE
VALENCIA

Tipo de hibridación	Orbitales que se hibridan	Tipos de enlace Simple, doble, triple	Tipos de hidrocarburos	Geometria	Ángulos de enlace
Sp ³	S, Px, Py, Pz	C-C simple	alcanos	orbital hibrido	109.5°
Sp²	S, Px, Py	C =C	alqueno	B	120°
Sp	S, Px	C≡ C triple	alquino	Be	180°

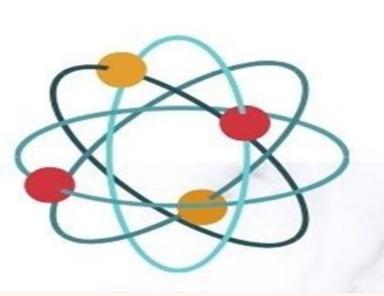
El átomo de carbono (Z= 6)

modelo cuántico modelo de Bohr

$$2p^{2} \frac{\frac{1}{2}(2,1,0,+1/2)}{\frac{1}{2}(2,1,1,0,+1/2)}$$

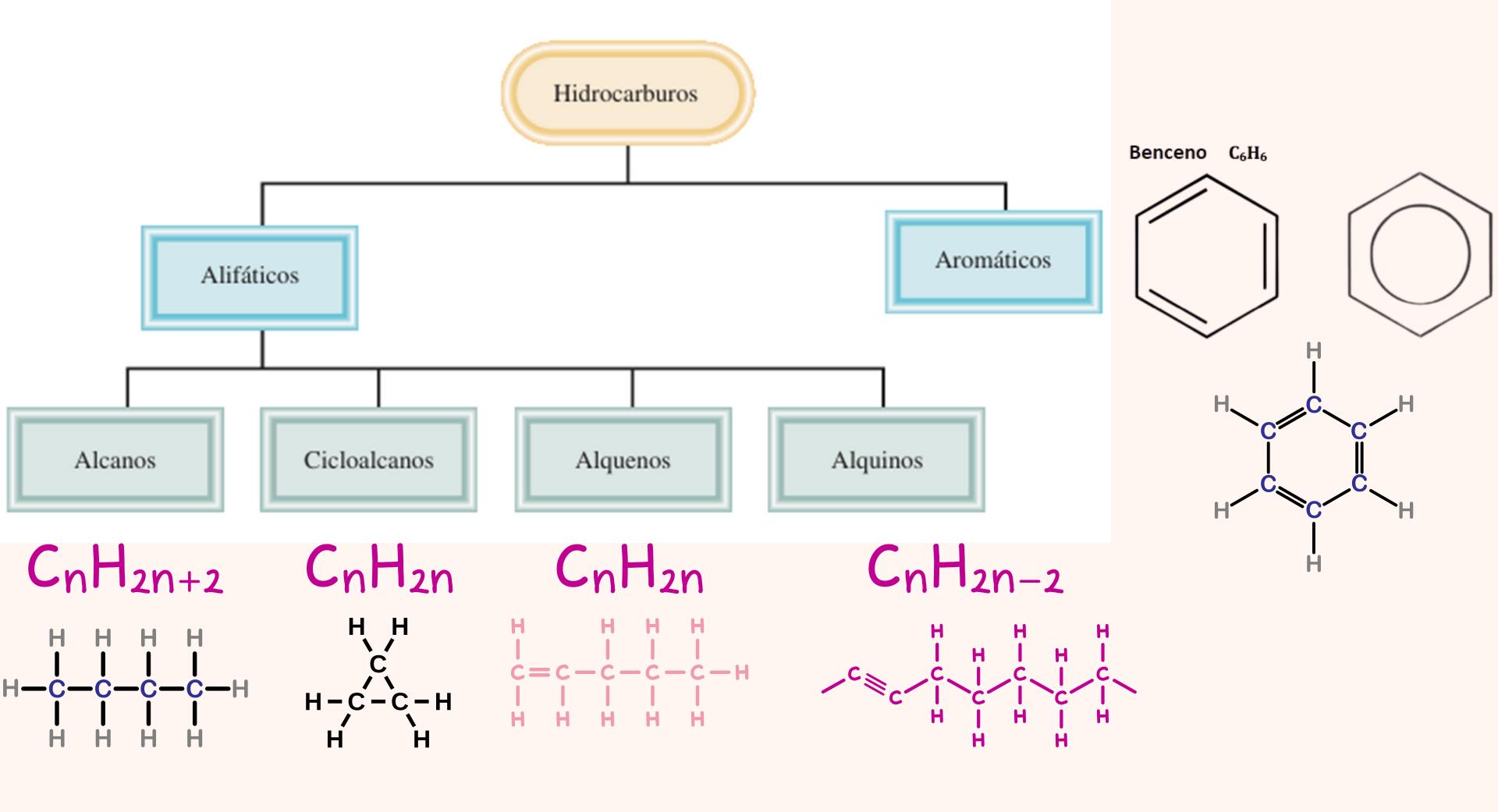

 $1s^2 2s^2 2p^2$

Representación del átomo de carbono de acuerdo al modelo de Bohr y al modelo mecanocuántico, indicando en este último la disposición de los electrones (indicados por flechitas) en los distintos orbitales. Cada electrón tiene una serie de números cuánticos que identifican el lugar donde se le puede encontrar según el nivel, orbital, subnivel y "espín". Nótese que en cada orbital sólo caben dos electrones con espines opuestos.


TIPOS DE HIBRIDACIÓN

Carbono sp ³	Carbono sp ²	Carbono sp
1 enlace sigma (σ)	Enlace doble 1 enlace sigma (σ) 1 enlace pi (π)	Enlace triple 1 enlace sigma (σ) 2 enlace pi (π)
con ángulos de enlace de 109,5°	Geometría trigonal plana donde los ángulos de enlace son de 120° aproximadamente.	
110 pm ‡ 109.5*	107.6 pm 133 pm 116.6*	200 Kcal/mol
105 Kcal/mol Metano	Eteno	Etino

Estructura	Enlace sigma (σ)	Enlace pi (л)	Hibridación	Geometría	Ángulo de enlace
- <mark>-</mark> -	4	0	Sp3	Tetraédrico	109,5°
)c=	3	1	Sp2	Triangular plana	120°
-c ≡	2	2	Sp	Lineal	180°
c	2	2	Sp	Lineal	180°



¿Cuántos enlaces π y σ hay en la molécula de eteno (CH2CH2)?

- 5 enlaces π y 1 enlace σ
- 1 enlace π y 4 enlaces σ B)
- 4 enlaces π y 1 enlace σ C) D)
- 2 enlaces π y 4 enlaces σ
- E) 1 enlace π y 5 enlaces σ

Identificar la cadena principal

01

Es la cadena continua más larga de átomos de carbono. Debe contener el mayor número de enlaces múltiples, si los hay.

Numerar los carbonos

02

Se numera la cadena de forma que:

Los enlaces múltiples (dobles o triples) tengan el número más bajo posible.

Si hay ramificaciones, se elige la numeración que les dé el número más bajo en el conjunto. ldentificar y nombrar sustituyentes

Los grupos alquilo (ramas laterales) se nombran con el sufijo "-il".

03

 $CH_3- = metil$ $CH_3CH_2- = etil$ $CH_3CH_2CH_2- = propil$

Nombrar la molécula

04

Orden: localización – nombre del sustituyente – nombre de la cadena principal con prefijo + sufijo.

Si hay varios sustituyentes iguales: usa prefijos di-, tri-, tetra-, etc.

Orden alfabético para distintas ramificaciones.

¿Quién es el Sr. CERNS? Es el Inspector Oficial de Nomenclatura IUPAC. Su misión es leer y registrar las direcciones moleculares correctamente en su bitácora. Para ello, sigue cinco reglas:

"SENOR CERNS"

Letra	Paso	Analogía urbana	Acción en química
C	Cadena principal	Es la calle más larga de la ciudad	Identifica la cadena con más C
E	Enumerar	Elige el sentido de la numeración de casas	Numera los carbonos (regla mínima)
R	Ramificaciones	Son los callejones o ramas secundarias	Identifica grupos alquilo
N	Nombres y números	Escribe la dirección: calle, casa, vecino	Indica posición y nombre de ramas
S	Sufijo final	Define el tipo de calle : simple, doble, etc.	Termina con -ano, - eno, -ino

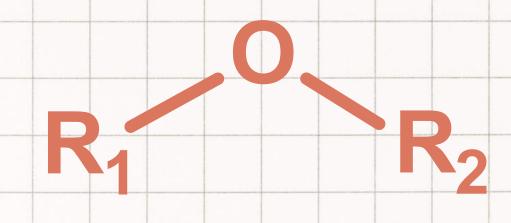
Sufijos según tipo de hidrocarburo

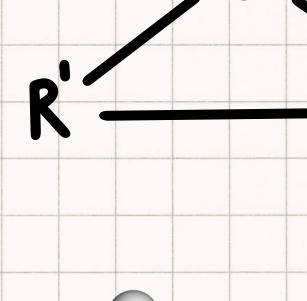
Tipo de hidrocarburo	Sufijo	Ejemplo base
Alcano	-ano	butano
Alqueno	-eno	buteno
Alquino	-ino	butino

Ramificaciones comunes

Nº de carbonos	Nombre del sustituyente
1	Metil
2	Etil
3	Propil
3 (ramificado)	Isopropil

ME-ET-PR-BU...
Metil (1), Etil (2), Propil (3), Butil (4)

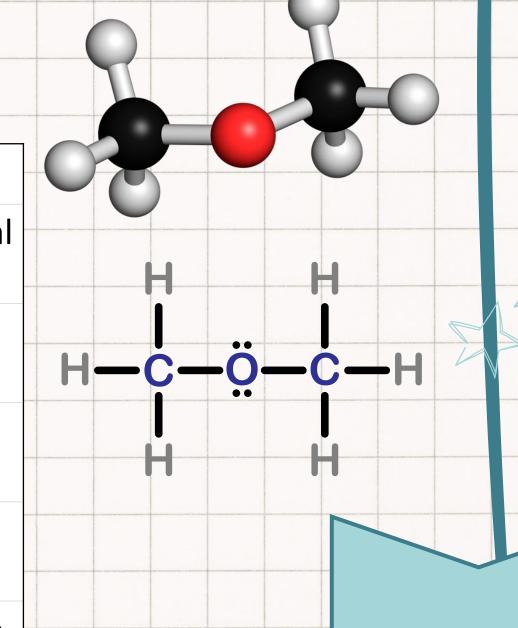

GRUPOS FUNCIONALES


11		
C	K	

Función Orgánica	Grupo Funcional	Fórmula general	Sufijo (IUPAC)
T CHILDREN C. Bentines.		- Commence Grand and	
Alcoholes	-OH	R-OH	-ol
Aldehídos	–СНО	R-CHO	-al
Cetonas	-CO-	R-CO-R'	-ona
Ácidos carboxílicos	–СООН	R-COOH	-oico
Éteres	-O-	R-O-R'	(éter de)
Esteres	-COO-	R-COO-R'	-oato de
Aminas	-NH ₂	R-NH ₂	-amina
Amidas	-CONH ₂	R-CONH ₂	-amida
Halogenuros de alquilo	–X	R–Cl, R–Br, R–F, R–I	(haluro de)

ENLACES SENCILLOS C-O

LOS ÉTERES



Sr CERNS:

"Cuando hay dos calles y un puente oxigenado"

Letra	Acción del Inspector	Aplicación a Éteres
C	Busca la cadena principal	Aquí no hay una principal → hay dos
E	Enumera los carbonos	Se nombran ambos lados del oxígeno
R	Identifica las ramificaciones	Los dos grupos alquilo son "ramas"
N	Escribe los nombres y números	Se ordenan alfabéticamente
S	Termina con el sufijo correcto	Se usa "éter de" como sufijo común

Ejemplo con el Sr. CERNS

Molécula: CH₃–O–CH₂CH₃

- "C: Tiene dos cadenas: metil y etil"
- 2. "E: No es necesario enumerar carbonos"
- 3. "R: Ambas son ramas alquilo"
- "N: Orden alfabético → etil va después de metil"
- 5. "S: Usamos la palabra éter al final"

Nombre: Eter metil-etílico

ENLACES SENCILLOS C-O

LOS ALCOHOL

OH

"El Inspector CERNS toma un trago en la casa más cercana al -OH"

Letra	Acción del Inspector CERNS	Aplicación en alcoholes
С	Encuentra la cadena principal	Escoge la más larga que contenga el –OH
E	Enumera los carbonos	Desde el extremo más cercano al –OH
R	Identifica ramificaciones	Metil, etil, etc. como siempre
N	Escribe números y nombres	Posición del –OH + nombres de ramas
S	Usa el sufijo de la función orgánica	Para alcoholes se usa – ol

H₃C

OH

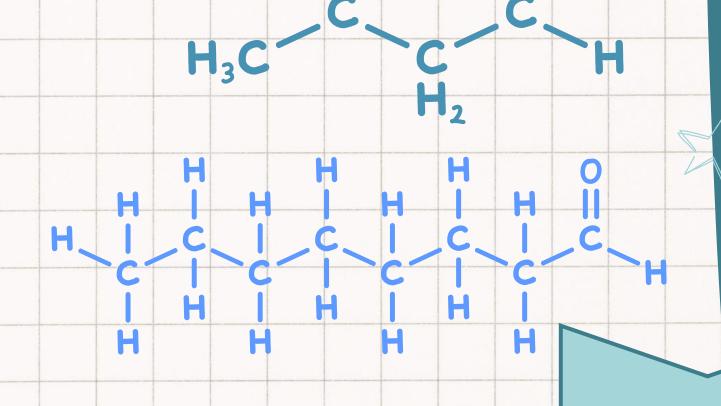
OH

H₃C

CH₃

Ejemplo: CH₃-CH(OH)-CH₃

- "C: Cadena más larga = 3 carbonos → propano"
- 2. "E: Numeramos desde el extremo más cercano al -OH"
- 3. "R: No hay ramificaciones"
- 4. "N: El grupo –OH está en el carbono 2"
- 5. "S: Terminación del alcohol = -ol"


ALDEHÍDOS

,C,

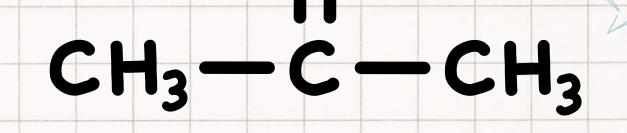
El Sr. CERNS entra a una calle sin salida, donde vive el jefe aldehído (–CHO) en la casa 1.

Todos los vecinos se enumeran desde él.

Letra	Acción del Inspector CERNS	Aplicación a aldehídos
C	Encuentra la cadena principal	Siempre incluye el carbono del –CHO
E	Enumera desde el grupo –CHO	El –CHO siempre es el carbono número 1
R	Identifica las ramificaciones	Igual que siempre (metil, etil, etc.)
N	Anota posiciones y nombres de ramas	Desde el carbono 2 en adelante
S	Aplica el sufijo –al	Elimina la "–e" del alcano base

Ejemplo: CH₃–CH₂–CH₂–CHO

- 1. C: Cadena principal: 4 carbonos = butano
- 2. E: Carbono 1 = grupo –CHO
- 3. R: No hay ramificaciones
- 4. N: Nada adicional
- S: Cambia –ano por –al → butanal
- Nombre: Butanal



CETONAS

R₁ R₂

El Sr. CERNS camina por una avenida larga, y encuentra una ventana polarizada (C=O) en medio de la calle. Él numerará desde el extremo más cercano a esa ventana para registrar la dirección.

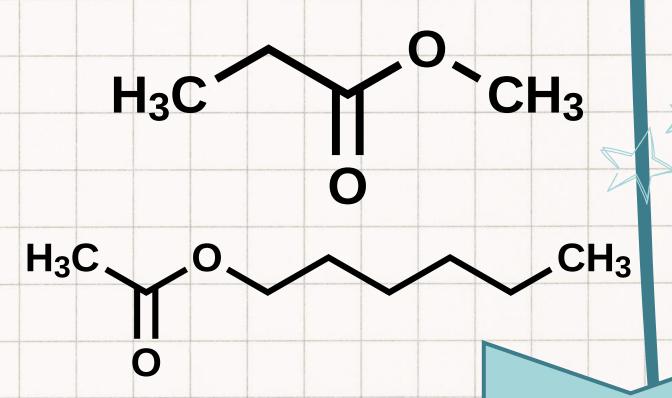
Letra	Acción del Inspector CERNS	Aplicación a cetonas
С	Busca la cadena más larga	Debe incluir el grupo C=O
E	Numera desde el extremo más cercano al C=O	Para darle el número más bajo
R	Identifica las ramificaciones	Como siempre
N Escribe ubicación del C=O y ramas		Posición + nombre
S	Usa el sufijo –ona	Cambia la "–e" del alcano base por "–ona"

Ejemplo: CH₃–CO–CH₂–CH₃

- C: Cadena principal = 4 carbonos → butano
- 2. E: Grupo C=O está en posición 2 → numeramos desde ahí
- 3. R: No hay ramas
- 4. N: Anotamos posición del grupo carbonilo
- 5. S: –ona → butan-2-ona o 2-butanona

Nombre: Butanona (nombre común para 2-butanona)

ENLACES SENCILLOS C-O Y DOBLES C=O


ESTERES

El Sr. CERNS

"El ácido se queda con el apellido (oato), y el alcohol se lo lleva de paseo (de alquilo)"

Letra	Acción de CERNS	Aplicación a ésteres	
C	Parte ácida: contiene el grupo – COO –	Se toma como cadena principal	
E	Se enumera desde el carbono del COO	Ese es el carbono 1	
R	El otro grupo (R') es la parte alcohólica	Se nombra como alquilo separado	H ₃ C
N	El nombre se arma como:	"[oato] de [alquilo]"	
S	Sufijo especial	No usa –ol ni –ona, sino: –oato de…	

Ejemplo: CH₃-COO-CH₂CH₃

- C: Cadena con el grupo –COO–: CH₃–COO → ácido etanoico
- R: Grupo alcohol: CH₂CH₃ → etilo
- N: Etanoato de etilo
- 4. S: Sufijo ya incluido

Nombre: Etanoato de etilo

ACIDOS CARBOXILICOS

ROH

El Sr. CERNS entra a una calle con una entrada obligatoria: el gran portón del COOH. Siempre se entra por ahí y la casa 1 es el COOH. Desde ahí, él inspecciona las ramificaciones y las numera.

Letra	Acción de CERNS	Aplicación a ácidos carboxílicos
C	Cadena principal	Siempre debe incluir el grupo –COOH
E	Enumera la cadena	El carbono del –COOH es el número 1
R	Ramificaciones	Se nombran desde el carbono 2 en adelante
N	Nombres y números de las ramas	Se indican posiciones como siempre
S	Sufijo final	Se usa: ácido + nombre base –oico

Ejemplo: CH₃–CH₂–COOH

- **1. C**: 3 carbonos → propano
- 2. E: Carbono del COOH es el n.º 1
- 3. R: No hay ramificaciones
- 4. N: No aplica
- 5. S: Ácido + base –oico → ácido propanoico
- Nombre: Ácido propanoico

AMINAS

N(H,R)₂

R—NH₂

El Sr. CERNS entra a una casa con olor fuerte (NH₂).
Si el nitrógeno tiene amigos colgando (ramas), les pone un N-como dirección. Luego busca la cadena más larga donde anclarlo y le pone el apellido –amina.

Letra	Acción de CERNS	Aplicación a las aminas
C	Cadena principal	Escoge la cadena más larga que contiene el nitrógeno
E	Enumera la cadena	El carbono unido al N tiene la numeración más baja posible
R	Ramificaciones y grupos secundarios	Nombra cualquier sustituyente sobre el nitrógeno con prefijo N -
N	Nombres y números	Se indica la posición del grupo –NH₂ si es necesario
S	Sufijo	Se usa –amina o prefijo amino– según el tipo

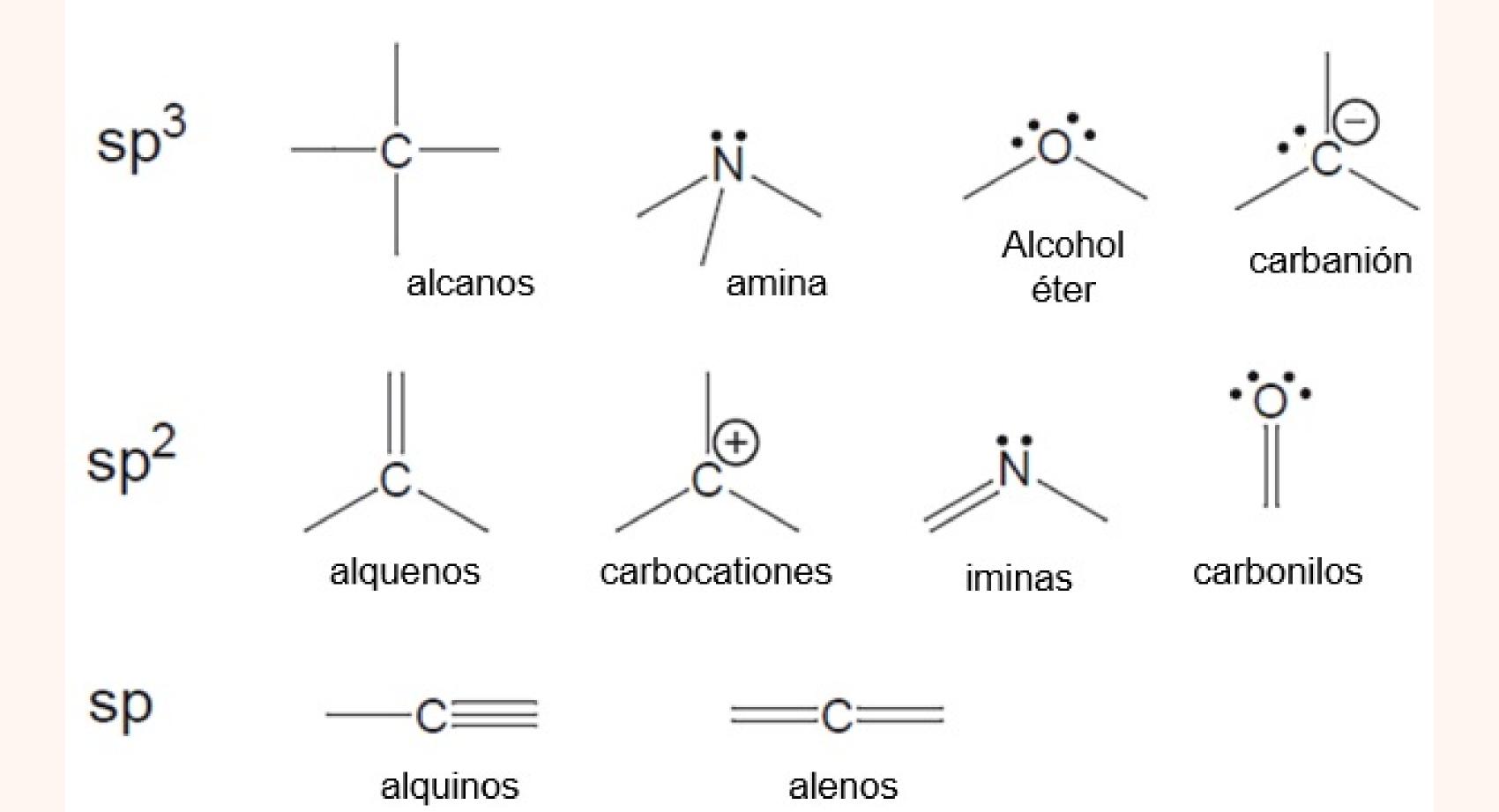
Ejemplo 2: CH₃–NH–CH₃

Amina secundaria: dos grupos metilo unidos a N

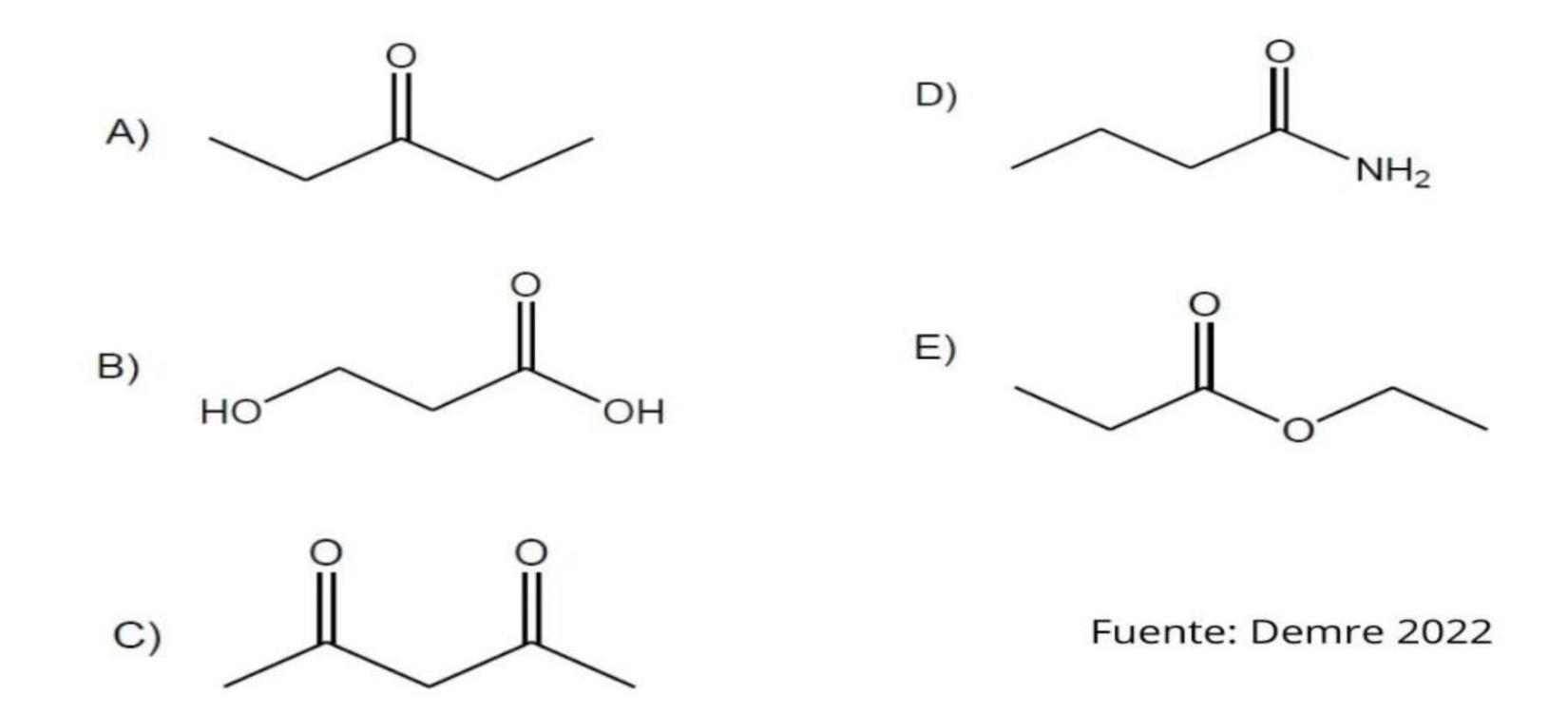
- 1. C: No hay cadena principal clara, se nombra como sustituyentes
- 2. R: Dos grupos metilo sobre el nitrógeno
- 3. N: Ambos con prefijo N-
- 4. S: -amina
- Nombre: N-metilmetanamina o simplemente dimetilamina

AMIDAS II

R-C-N-R


El Sr CERNS ve una casa de 2 pisos, C=O y NH2, Si el nitrógeno tiene ramas colgando, les pone N- delante del nombre y a la cadena principal le pone apellido –amida.

Letra	Acción del Inspector CERNS	Aplicación a las Amidas
С	Encuentra la cadena principal	Cadena más larga que incluye el grupo –CONH₂
E	Enumera los carbonos	El grupo −CONH₂ tiene prioridad = carbono 1
R	Identifica ramas y sustituyentes	Ramas sobre la cadena y sobre el N → se indican con N -
N	Escribe los nombres y números	Números para las ramas + prefijos N- para los sustituyentes del nitrógeno
S	Usa el sufijo correcto	-amida


Ejemplo 2: CH₃–CH₂–CONHCH₃

- 1. C: 3 carbonos → propano
- 2. E: Grupo amida en el carbono 1
- 3. R: Un metilo en el nitrógeno → se nombra como N-metil
- 4. N: Se incluye como N-metil-
- **5. S**: –amida
- Nombre: N-metilpropanamida

EJEMPLOS DE DIFERENTES TIPOS DE HIBRIDACIÓN

¿Cuál de las siguientes estructuras presenta la función éster?

